Zdrojový kód wiki Algotrading
Version 10.1 by David Brazda on 26.02.2023 14:38
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | = Resources = |
2 | |||
![]() |
1.2 | 3 | algo-trading basics [[https:~~/~~/algo-trading.readthedocs.io/en/latest/data-science-basics.html>>https://algo-trading.readthedocs.io/en/latest/data-science-basics.html]] a [[github>>https://github.com/awoo424/algotrading]] |
![]() |
1.1 | 4 | |
![]() |
1.3 | 5 | |
![]() |
4.2 | 6 | = Python and stocks = |
7 | |||
8 | [[https:~~/~~/github.com/LastAncientOne/SimpleStockAnalysisPython>>https://github.com/LastAncientOne/SimpleStockAnalysisPython]] | ||
9 | |||
![]() |
10.1 | 10 | [[integrace s TradingView webhooks >>https://github.com/robswc/tradingview-webhooks-bot]]- python based, na vlastnim serveru. (pokud se osvedci traderspost, pak muzu nainstalovat toto, napriklad na forum.pgwiki.cz, kde je docker a ma domenu) |
![]() |
4.2 | 11 | |
![]() |
10.1 | 12 | |
![]() |
1.3 | 13 | = Zajimavé indikátory = |
14 | |||
15 | Podívat se na Prior SAR: The SAR value for previous period. | ||
16 | Extreme Point (EP): The highest high of the current uptrend. | ||
17 | Acceleration Factor (AF): Starting at 0.02, increases by 0.02 each time the extreme point makes a new high. AF can only reach a maximum of 0.2, no matter how long the uptrend extends. | ||
18 | \\Dále se podívat na Commodity Channel Index (CCI) | ||
19 | The Commodity Channel Index (CCI) helps identify price reversals, price extremes, and trend strength. | ||
20 | Developed by Donald Lambert, CCI is a momentum-based oscillator used to help determine when an investment vehicle is reaching a condition of being overbought or oversold. Popis zde - vyzkouset | ||
![]() |
1.4 | 21 | |
![]() |
1.7 | 22 | A také [[ROC>>https://algo-trading.readthedocs.io/en/latest/technical-analysis.html#rate-of-change-roc]] |
![]() |
1.4 | 23 | |
24 | Popis základních indikátorů a jak na ně v pythonu je zde (projít!!) | ||
![]() |
1.3 | 25 | [[https:~~/~~/algo-trading.readthedocs.io/en/latest/technical-analysis.html>>url:https://algo-trading.readthedocs.io/en/latest/technical-analysis.html]] |
26 | \\a dale | ||
27 | Rsi divergence | ||
28 | [[https:~~/~~/github.com/SpiralDevelopment/RSI-divergence-detector>>url:https://github.com/SpiralDevelopment/RSI-divergence-detector]] | ||
![]() |
2.1 | 29 | |
30 | |||
31 | = AI = | ||
32 | |||
![]() |
9.1 | 33 | Základní myšlenka: Vstup (buď trade data nebo nějaký sec rt bar) + základní hodnoty indikátorů(ma, rsi, momentum..). Model dostane sušenku, když v aktuálním bodě predikuje, že půjde o malou hodnotu nahoru (např. 5 ticků). Za to dostane odměnu. A pustit na to třeba měsíční data. A vidělo by se. To by nemuselo být složité na interpretaci. |
![]() |
8.1 | 34 | |
![]() |
9.1 | 35 | A pak vytrénovaný model pustit na online data. |
36 | |||
37 | |||
![]() |
7.1 | 38 | LSTM in stock - příklad [[https:~~/~~/www.kaggle.com/code/faressayah/stock-market-analysis-prediction-using-lstm/notebook>>https://www.kaggle.com/code/faressayah/stock-market-analysis-prediction-using-lstm/notebook]] |
39 | |||
![]() |
8.1 | 40 | podívat se na keras a LTSM |
41 | |||
![]() |
3.2 | 42 | Zajimavý článek [[základy Recurrent Neural Networks>>http://karpathy.github.io/2015/05/21/rnn-effectiveness/]] a [[https:~~/~~/towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85>>https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85]] |
![]() |
3.1 | 43 | |
![]() |
3.3 | 44 | Příklad - [[singlefeature LSTM model in pytorch>>https://algo-trading.readthedocs.io/en/latest/integrated-strategy.html#single-feature-lstm-model]]. |
![]() |
3.1 | 45 | |
![]() |
5.2 | 46 | [[Stock Machine learning algorithms on github>>https://github.com/LastAncientOne/Deep_Learning_Machine_Learning_Stock]] ([[LSTM>>https://github.com/LastAncientOne/Deep_Learning_Machine_Learning_Stock/blob/master/Stock_Algorithms/LSTM_RNN_Part2.ipynb]])- projít |
![]() |
2.1 | 47 | |
![]() |
4.1 | 48 | Zadání: predikční modely (HFT, 15s dt, střednědobý) |
49 | |||
![]() |
2.1 | 50 | * - learning data |
51 | ** vývoj ceny - timeseries relevantní frekvence (trades, 15s ohlc a třeba 1h(1d) ohlc) | ||
52 | ** dopočítané/doplněné sloupce k timeseries (indikátory, calendar data a další time related data) | ||
53 | ** další doplňující atributy - jako premarket, fair price, trend z minulých období, odhad dnešního dne(dopočítávaný), celkový sentiment(může doplňovat jiný [[model>>https://algo-trading.readthedocs.io/en/latest/sentiment-analysis.html]] z news) | ||
54 | * | ||
55 | |||
56 |